Opportunities to Mitigate Greenhouse Gas Emission from Agriculture in the Southeastern USA

Alan J. Franzluebbers

Ecologist

Greenhouse Gases

✓ What are they?

Carbon dioxide (CO₂)

- Methane (CH₄)
- Nitrous oxide (N₂O)

Greenhouse Gases

- ✓ Why are they important?
 - Increasing concentration in the atmosphere since 1750 (Intergovernmental Panel on Climate Change, 2001)
 - CO₂ 31% increase
 - CH₄ 151% increase
 - N₂O 17% increase
 - Cause radiative forcing of the atmosphere, which could alter global temperature and ecosystem functioning
 - Can be manipulated by type of land management

Agricultural Role in GHG Emission

✓ In the USA, <10% of total emission

Source of emission (global warming potential)

CO₂ (1) soil cultivation fuel use

CH₄ (21)
anaerobic soil (rice)
enteric fermentation
livestock waste

N₂O (310) fertilization livestock waste

USDA (2004) U.S. Agric. & Forestry GHG Invent:1990-2001

- ✓ Geographic delineation (Bailey, 1995; Ecoregions of the USA)
 - AL
 - AR
 - DE
 - FL
 - GA
 - LA
 - MD
 - MS
 - NC
 - SC
 - VA

✓ Climatic conditions

National Climatic Data Center

- ✓ Agricultural production characteristics
 - Fraction of national totals during past 40 years
 - Dotted line is fractional land area of nation in the southeastern USA

✓ Agricultural production characteristics (last 100 yr)

Agricultural Mitigation Strategies

- ✓ Increase soil organic carbon sequestration
 - Conversion of land to less disturbed usage
 - Conservation tillage
 - Pasture development
- ✓ Reduce fossil fuel use
 - Tractor time
 - Grain drying
 - Irrigation
- ✓ Reduce nitrogen fertilizer saturation
 - Reduce opportunities for nitrous oxide emission
- ✓ Increase cropping intensity
 - Sequester more C per unit of input costs

Land Use

✓ Conversion of forest to conventionally tilled cropland can reduce SOC by ≥50%

Land Use

- ✓ Under forest and grass, soil organic C is typically stratified with depth.
- ✓ Below 0.5 m, soil organic C is typically
 <5 g kg⁻¹, except in high-clay-content soils.

Land Use

✓ Synthesis of available literature

Soil depth: 23 ± 5 cm

Soils: Ultisols (15), Vertisols (4), Alfisols (2), Inceptisols (2), Entisols (1)

Land use	Soil Organic C	No. observations		
	Mg ha ⁻¹			
Crop	31.1	27		
Grass	47.4	25		
Forest	49.9	15		

Forest = Grass > Crop

	Yield (Mg ha-1)		
Crop (no. pairs)	СТ	NT_	
Corn grain (19)	6.8	7.1	
Corn silage (5)	15.3	16.1	
Corn stover (3)	7.4 <	8.8	
Cotton lint (18)	1.0	1.1	
Cotton seed (9)	2.6 <	2.7	
Peanut seed (6)	3.4	3.4	
Sorghum grain (8)	4.5	4.3	
Soybean seed (18)	2.1	2.1	
Wheat grain (9)	3.0	3.1	
Overall (95)	5.1 <<	< 5.4	

✓ Long-term conservation-tillage cropping changes soil ecosystem functioning

✓ Compilation of literature in the southeastern USA

✓ Initial soil organic C level impacts relative effect of

NT

Soil Organic C under Conventional Tillage (Mg ha-1)0-20 cm

✓ Cover cropping with NT enhances sequestration

	Cover Crop		
Property	Without		With
Number of observations	40		53
Duration of comparison (yr)	12	**	9
SOC sequestration with NT (Mg ha ⁻¹)	2.5	**	3.9
SOC sequestration with NT (Mg ha-1 yr-1) 0.28	**	0.53
Ratio of SOC _{NT} : SOC _{CT}	1.11	*	1.20

✓ Nitrogen fertilization improves SOC sequestration, but not necessarily net global warming potential

Pastures

√ Grass establishment affects soil organic C

Effect of grass establishment

Number of studies	12
Duration of comparison (yr)	15 <u>+</u> 17
SOC sequestration (Mg ha ⁻¹ yr ⁻¹)	1.03 + 0.90

✓ Rate of SOC sequestration was 2.5 times greater than with NT cropping

Pastures

✓ Cattle grazing affects soil organic C

	SOC (Mg ha ⁻¹)		
Effect of harvest management	Hayed	Grazed	
15-19-yr-old bermudagrass	31.2 <u>+</u> 5.4	38.0 <u>+</u> 8.6	
5-yr-old bermudagrass	38.1 <u>+</u> 2.4	42.1 <u>+</u> 0.8	
SOC sequestration (Mg ha ⁻¹ yr ⁻¹)	0.76 + 0.60		

✓ Greater SOC with grazing was likely due to the return of dung to soil, while haying removed forage from land.

Pastures

✓ Poultry manure affects soil organic C

	SOC (Mg ha ⁻¹)	
Effect of manure application	Without	With
2-yr studies (n=6)	19.8 <u>+</u> 8.9	19.6 <u>+</u> 8.4
11 <u>+</u> 8-yr studies (n=8)	30.6 <u>+</u> 11.4	36.8 <u>+</u> 10.6
SOC sequestration for all (Mg ha-1 y	vr-1) 0.26 <u>+</u>	2.15
SOC sequestration for >2-yr studies	0.72 +	0.67

- ✓ Conversion of C in poultry litter to SOC was 17 ± 15%.
- ✓ Manure application transfers C from one land to another.

Trace-Gas Emissions

✓ Nitrous oxide

Limited data available

	Nitrous oxide emission (kg N ₂ O-N ha ⁻				
Study	Study Control Poultry L				
Marshall et al. (2001) Nutr. Cyc	I. Agroecosys. 59:	75-83			
Coastal Plain (AL)	6.3	4.9			
Piedmont (GA)	0.3	1.9			
Cumberland Plateau (TN)	1.9	1.5			
Thornton et al. (1998) Atmos. E	nviron. 32:1623-16	630			
Tennessee Valley (AL)	0.5	3.9			
	urea 3.0 c	composted 1.6			
Groffman (1985) Soil Sci. Soc.	Am. J. 49:329-334				
Athens GA (cropping system	n) CT 579	NT 505			
Walker et al. (2002) Chemosphere 49:1389-1398					
Dillard GA (riparian forest)	grazed 25	ungrazed 24			

Trace-Gas Emissions

✓ Methane

- Flux estimates in other regions indicate potential for soil with high organic matter to act as a sink for CH₄
- No data on soil CH₄ uptake in the southeastern USA

Harper et al. (2000) J. Environ. Qual. 29:1356-1365 Cordele GA (swine confinement, micrometeorological assessment)

Lagoon	Total gas flux	<u>N₂</u>	CO_2	N_2O	CH ₄
	kg ha ⁻¹ d ⁻¹		⁻	%	
First (3.5 ha)	159	15	5	0	79
Second (1.3 ha)	21	54	2	0	26
Third (3.5 ha)	20	59	1	3	13
Fourth (1.3 ha)	17	69	1	18	8

On-Going Studies in Watkinsville

On-Going Studies in Watkinsville

- ✓ Salem Road grazing study, Farmington GA
- ✓ Phase 1: 1994-1998, 'Coastal' bermudagrass
- ✓ Phase 2: 1999-2005, interseeded 'Georgia 5' tall fescue
- √ 4 harvest regimes
 - Hayed
 - Low forage mass
 - High forage mass
 - Unharvested

Full

Forage utilization

- None
- ✓ 3 fertilization regimes (200 kg N ha⁻¹ yr⁻¹)
 - Inorganic only
 - Clover+inorganic
 - Broiler litter
- 3 replications

- Inorganic only
- 1x broiler litter + inorganic, P based
- 3x broiler litter, N based

Phase 2

✓ Grazed paddocks

✓ Exclosures

Mean yearly change (Mg · ha⁻¹ · yr⁻¹)

Soil Organic Carbon (Mg⁻ha⁻¹)

Impact
Grazed pastures
sequestered more
than twice the
quantity of soil
organic C as
ungrazed forage
systems.

On-Going Studies in Watkinsville

- ✓ Dawson Field grazing study, Watkinsville, Hog Mountain Rd
- ✓ 2002-2004, 'Jesup' tall fescue
- √ 3 endophyte associations
 - Wild-type endophyte
 - Max-Q endophyte (low ergot alkaloid)
 - No endophyte
- ✓ 2 fertilization regimes (180 kg N ha⁻¹ yr⁻¹)
 - Inorganic
 - Broiler litter
- √ 2 replications
- √ +2 hayed, Max-Q, inorganically fertilized pastures

Dawson Field Grazing Study

Dawson Field Grazing Study

✓ Soil organic C accumulated in response to endophyte

miner	SOC	tion of
98 43 26	** **	78 38 23
16		16

Dawson Field Grazing Study

✓ Isolation of endophyte affect on soil organic matter

Soil pool	E-		E+	
Whole-soil organic C (Mg ha-1)	29.3	<	31.2	Accumulation of
Particulate organic C (Mg ha-1)	12.5		12.4	organic C in
Soil microbial biomass C (Mg ha ⁻¹)	1.3		1.3	macroaggregates
Mineralizable C (Mg ha ⁻¹ 24 d ⁻¹)	1.3		1.3	
Macroaggregate C (Mg ha ⁻¹)	31.1	<<	33.6	
Microaggregate C (Mg ha ⁻¹)	1.7		1.8	
Particulate-to-total C (g g ⁻¹)	0.42	>	0.39	
Microbial biomass-to-total C (mg g ⁻¹)	45	>	42	
Mineralizable-to-total C (mg g ⁻¹)	44		41	Per unit of total C, biologically active

Franzluebbers and Stuedemann (2005) Soil Sci. Soc. Am. J.

otal C, biologically active fractions depressed with endophyte

On-Going Studies in Watkinsville

- ✓ Pasture-Crop Rotation study, Watkinsville, Govt. Station Rd.
- √ 1982-2002, tall fescue-endophyte associations
- ✓ 2002-2004, grain cropping with cover crops
- ✓ 2 cropping systems
 - Summer grain winter cover crop (sorghum-rye)
 - Winter grain summer cover crop (wheat pearl millet)
- ✓ 2 tillage regimes
 - Conventional tillage
 - No tillage
- ✓ 2 cover crop management regimes
 - Unutilized
 - Grazed by cattle
- √ 4 replications

✓ Summer grain – winter cover crop

✓ Winter grain – summer cover crop

	S	oil	Surface Residue	
Time	CT	NT	СТ	NT
0-20-cm depth		Mg (C ha ⁻¹	
Initiation	37.9	39.2	1.7	1.7
End of 1 yr	33.2 <	< 38.9	0.2 <<	< 2.2
End of 2 yr	33.9 <<	<< 40.2	0.5 <<	< 4.0 .

✓ At the end of 2 years, total C stock (soil + residue) under CT was 5.2 Mg C ha⁻¹ lower and under NT was 3.3 Mg C ha⁻¹ higher than initial C stock (21% difference from initial level of 40.3 Mg ha⁻¹)

Unpublished data

[✓] Carbon was immediately redistributed within the soil profile with CT, but not greatly mineralized

[✓] Surface residue C was lost with CT, but accumulated with NT

Conclusions

- ✓ Conservation agricultural systems can preserve soil organic C and help mitigate greenhouse gas emission
 - Conservation-tillage cropland
 - Pasture management
 - Pasture-crop rotation
- ✓ Agricultural contribution to net global warming potential requires more extensive research on N₂O emission and CH₄ flux in the southeastern USA
- ✓ Low fossil-fuel derived agricultural systems should be developed to further mitigate greenhouse gas emission